
VC-1: A Scalable Graphics Computer
with Virtual Local Frame Buffers

Satoshi Nishimura Tosiyasu L. Kunii

The University of Aizuy
Abstract

The VC-1 is a parallel graphics machine for polygon rendering
based on image composition. This paper describes the architec-
ture of the VC-1 along with a parallel polygon rendering algorithm
for it. The structure of the VC-1 is a loosely-coupled array of 16
general-purpose processors, each of which is equipped with a local
frame buffer. The contents of the local frame buffers are merged
in real time for generating the final image. The local frame buffers
are virtualized with a demand-paging technique, by which the im-
age memory capacity for each local frame buffer is reduced to one
eighth of full-screen capacity. Polygons are rendered in either pixel
parallel or polygon parallel depending on the on-screen area of each
polygon. The real performance of the VC-1 as well as estimated
performance for systems with up to 256 processors is shown.

CR Categories and Subject Descriptors: C.1.2 [Processor Ar-
chitectures]: Multiprocessors - MIMD, Parallel processors; B.3.2
[Memory Structures]: Design Styles - Virtual memory; I.3.1 [Com-
puter Graphics]: Hardware Architecture - Parallel processing,
Raster display devices; I.3.3 [Computer Graphics]: Picture/Image
Generation - Display algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - Visible line/surface al-
gorithms.

Additional Key Words and Phrases: demand paging, frame
buffers, parallel polygon rendering, scalable.

1 Introduction

The increasing demand for real-time generation of high-quality im-
ages puts more and more emphasis on the importance of scalability
in high-end graphics machines. In mechanical CAD or virtual re-
ality applications, solid models composed of more than one million
polygons are often used for generating high-quality images. To dis-
play such models at the rate of 30 frames per second, more than 30
million polygons need to be processed in one second, which requires
hundreds of processors with current technology. Thus, scalability is
the most important issue in order to satisfy such a demand.

The image composition architecture proposed by Molnar [8] is
the most promising candidate for future polygon-rendering ma-
chines because of its linear scalability. According to Molnar et
al. [9], graphics machine architectures can be categorized into three
types. The first category, called sort-first, performs both geometry

yTsuruga, Ikki-machi, Aizu-Wakamatsu City, Fukushima, 965-80, Japan.
Email: nisim@u-aizu.ac.jp, kunii@u-aizu.ac.jp
calculation and rasterization in pixel parallel, while the second cat-
egory, named sort-middle, executes geometry calculation in object
parallel and rasterization in pixel parallel. The sort-middle cate-
gory, to which most of today’s commercial machines including Sil-
icon Graphics RealityEngine [1] belong, has limits on the number of
processors since its communication network becomes bottlenecked
on a large-scale system when the results of geometry calculation
are sent to every rasterization processor. The sort-first category has
a similar problem. The last category, called sort-last, performs both
geometry calculation and rasterization in object parallel, and is pos-
sibly scalable since the required bandwidth of its communication
network is almost constant against the number of polygons. The
sort-last category can be further divided into two classes based on
which set of data is transmitted via the communication network.
In the first class, each rasterization processor sends only the pix-
els generated [7]. This class is hard to scale because implementing
a scalable communication network for this class is difficult. The
second class of the sort-last category is the image composition ar-
chitecture, in which case each processor outputs all the pixels on the
screen. With image composition architecture, a linearly-structured
communication network can be used, and therefore, there is no dif-
ficulty with increasing the number of processors.

The history of image composition architecture descends from
Cohen and Demetrescu’s proposal [2]. Various modifications or ad-
ditions are later applied by many researchers; for example, the inte-
gration of a geometry calculation unit in each processor [13], anti-
aliasing by generating a depth-sorting list of pixel values [14, 16],
anti-aliasing by alpha-blending [15], and the implementation of
Phong shading on this architecture [4]. Molnar’s architecture dif-
fers from these architectures in that each processor can handle plu-
ral polygons while the architectures listed above can handle just one
polygon per processor.

Figure 1 depicts Molnar’s image composition architecture. Each
processor has its own full-screen frame buffer, called a local frame
buffer, which holds a subimage (including Z-values) generated by
the processor. This subimage possibly overlaps with the subimages
generated by other processors. The contents of all the local frame
buffers are merged periodically by the image merger at the speed of
the CRT scan. During merging, depth values are taken into account
in order to accomplish hidden surface removal. Palovuori [12] has
implemented a system based on this architecture.

One of the problems with this architecture lies in the memory
cost for local frame buffers. Since frame buffer bandwidth is one
of the critical factors of graphics machines, frame buffer memory
should be fast as possible. However, enabling fast memory of full-
screen capacity for each processor is impractical if the number of
processors is large. Therefore, the use of low-speed memories is
imposed, which will degrade the system’s performance.

One possible method for overcoming this problem is the region-
based approach utilized in the PixelFlow system [10]. In this ap-
proach, the screen is divided into several regions, and each local
frame buffer holds the pixel information only for one region. To
hold pixel information for the entire screen, a global frame buffer is
placed between the image merger and the CRT. Prior to rasteriza-
tion, each processor performs geometry calculations and classifies
polygons according to regions using xy-buckets. Then, the poly-
gons are rasterized in multiple passes: for each pass, images for
one region are generated on the local frame buffers, and then, the
images are merged and stored into the appropriate section on the

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Image Merger

P P P P

Local Frame Buffers

Rendering
Processors

LFB

GFB

LFB LFB LFB

Global Frame Buffer
 (if necessary)

CRT

Figure 1: Image composition architecture

global frame buffer. With this method, the memory requirement for
the local frame buffer is reduced in inverse proportion to the number
of regions. However, it suffers from the following disadvantages:

1. The load balancing problem becomes more difficult.
In the full-screen approach, it is enough to execute global syn-
chronization once per frame. In the region-based approach,
global synchronization is necessary for each pass. Therefore,
processor idle time increases since a processor can not start
the processing in the next region until all the other processors
finish processing the current region.

2. The clipping time increases.
Polygon clipping occurs not only with the screen boundary but
also with region boundaries.

In order to solve these problems, we propose an alternative ap-
proach called a virtual local frame buffer for reducing the frame
buffer memory requirement. Section 2 describes the principle of the
virtual local frame buffer. Section 3 presents a prototype machine
called the VC-1 developed for justifying the virtual local frame
buffer. Section 4 discusses a parallel polygon rendering algorithm
suitable for the VC-1 architecture. Section 5 shows the results of
performance measurement and compares the virtual frame buffer
approach with the region-based approach. Section 6 discusses the
scalability of the VC-1 architecture. Section 7 concludes this paper
with some suggestions for future research.

2 Virtual Local Frame Buffer

Access to the local frame buffer (LFB) tends to have space locality.
In other words, a processor seldom generates an image filling the
entire screen. In most cases, only a part of the screen is accessed.

The virtual local frame buffer (VLFB) utilizes this characteristic
to reduce the memory requirement. We use a demand-paging tech-
nique so that the LFB can virtually hold the pixel information of the
entire screen. The screen is divided into small equal-sized rectan-
gular regions called patches, and memory units are allocated only
to such patches that the processor has accessed (Figure 2). To im-
plement this, two types of memories are used: image memory and a
patch table. Image memory holds pixel information and its capac-
ity is less than full-screen capacity. The patch table maintains the
access existence and image memory address of every patch.

In most cases, generated images can be completely stored in im-
age memory. However, when access locality is weak, it is possible
that image memory is exhausted. This situation is called a local
frame buffer overflow (LFB overflow). To handle this, the global
frame buffer (GFB) in Figure 1, which is a full-screen frame buffer
holding both color and depth information, is necessary. The GFB
is cumulative: it stores pixel values only when a new pixel value
is closer to the viewer than the one previously stored in the GFB.
Image Memory

Screen

patch

Figure 2: Virtual local frame buffer

When an LFB overflow occurs in a processor, the processor sus-
pends rendering until a certain number of patches in the LFB are
transferred to the GFB, and then it continues rendering. Since the
GFB is cumulative, the patches can be reused to store a different
part of the screen once its contents are transferred to the GFB.

There are two concerns with the VLFB. One is that LFB access
time may increase because two memories, the patch table and image
memory, are accessed during each access operation. However, by
organizing a two-stage pipeline consisting of patch table access and
image memory access, the access time increase will be mitigated.
The other concern is processor idle time due to LFB overflows. In
our implementation, true real-time image generation no longer be-
comes possible if an LFB overflow occurs in some processor. How-
ever, LFB overflows are nearly avoidable with the careful consider-
ation of the image memory capacity as well as a software technique
called adaptive parallel rasterization described in Section 4.2.

3 The VC-1

The VC-1 (Figures 3, 10 and 11) is a loosely-coupled multiprocessor
with a frame buffer subsystem containing the VLFBs. The primary
purposes of the VC-1 are to evaluate our architecture and also to
provide an environment for developing parallel software for the ar-
chitecture. Rendering speed is not a primary design goal; instead,
flexibility is maximized. For this reason, the VC-1 has no special
hardware accelerators for rasterization.

3.1 Processing Elements

The VC-1 has 16 processing elements, each of which contains the
Intel i860 processor operating at 40MHz together with an 8MB local
memory. The peak floating-point operation performance of the VC-
1 is 1.3 GFLOPS. This high performance makes it possible to apply
the VC-1 not only to polygon rendering but also to ray tracing or
other numerical applications.

The processing elements are connected by both point-to-point
communication links and a broadcast bus. The point-to-point com-
munication links are organized in a modified 2D-torus topology and
able to exchange data between any pair of processors or between a
processor and the host computer at the speed of 20Mbits/sec. The
broadcast bus can transmit data from either the host computer or
one of the processors to all the processors. The peak bandwidth of
the broadcast bus is 27Mbytes/sec. With polygon rendering, only
the broadcast bus is utilized; communication links are reserved for
other algorithms.

The sync line is a 1-bit line realizing global synchronization
across all the processors. The host computer can optionally par-
ticipate in the global synchronization.

3.2 The Host Computer

The host computer is an IBM-compatible personal computer
equipped with communication interfaces for the VC-1. All the data

Figure 3:
The structure
of the VC-1

Processing
Element

MU

Processing
Element

LFB

MU

Processing
Element

LFB

MU

Processing
Element

LFB

MU

Host
Computer
(PC-AT)

Broadcast Bus

Interconnection Network (2D-Torus Topology)

Global
Frame
Buffer
(GFB)

Accumulation
Buffer

Display

Pipelined Image Merger (PIM)

Frame Buffer Subsystem

(Double
Buffered)

(Double
Buffered)

Local
Frame
Buffer
(LFB)

MU: Merging Unit

Selector

Blank
pixel
value

Sync Line

GFB unit
necessary for calculation, including i860 program codes or polygon
data, initially reside in the hard disk of the host computer and are
loaded to the local memory of the processors via the broadcast bus.

The host computer has a direct access path to the global frame
buffer. This is useful for dumping created images or displaying a
cursor on the screen, for example.

3.3 Frame Buffer Subsystem

Local Frame Buffer

The LFB is double-buffered so that the processor can generate the
image of the next frame in parallel with the image composition of
the previous frame. One buffer is called the front buffer, which is
accessed by the processor, and the other is called the back buffer,
of which the contents are transmitted to the image merger. These
buffers are swapped at the end of each frame generation as well as
at the LFB overflow.

Figure 4 shows a block diagram of the LFB unit. The color and
depth values are stored in image memory consisting of high-speed
static RAMs. The image memory capacity for each buffer is 1/4.7
of full-screen capacity. The address space of the image memory
is divided into pages, each of which has the capacity for storing a
patch. Each page is assigned a unique sequential number called a
page identifier.

The patch table is a high-speed static RAM that maintains the sta-
tus of every patch. The status consists of a 1-bit field, called a page
existence flag, and a 12-bit field, called a page ID field. The page
existence flag indicates whether an image memory page is allocated
or not. The page ID field contains the identifier of the associated im-
age memory page. Patch size options include 4�4, 8�8, and 16�16
pixels. Usually, the 4�4-pixel configuration yields the best perfor-
mance. Other patch sizes are designed for evaluation purposes.

The scan counter is a free-running counter that controls the trans-
mission from the LFB to the image merger. The counter value ad-
vances according to the raster scan order; it starts from the upper-
left corner of the screen and ends at the lower-right corner. When it
reaches the end, it restarts immediately at the beginning. The clock
and reset signals of this counter come from the GFB unit.

The page ID generator (PIG) is a counter used for the automatic
allocation of a new image memory page. Its value indicates the
identifier of the next free page.

The LFB access operations are performed through a two-stage
Buffer 2

CPU Data Bus

C
P

U
 A

dd
re

ss
 B

us

Buffer 1

Patch
Table

low-order bits

high-order bits

Image
Memory

A
dd

re
ss

D
at

a

A
dd

re
ss

D
at

a

M
ul

tip
le

xe
rScan

Counter

Raster Data
Output
(To the
Merging Unit)

Bus Transceivers

Page ID
Generator

Mishit
(To the
controller)

64

6464

17

12

1

La
tc

h

 12

Figure 4: Local frame buffer

pipeline. The first stage reads the patch table and examines the page
existence flag. If the flag is false, the first stage also updates the page
table entry with the PIG value, sets the page existence flag to true,
and increments the PIG. The second stage accesses the image mem-
ory. In the first stage, it takes 4 CPU clocks if the page existence
flag is false; otherwise, it takes 3 clocks. The second stage always
takes 3 clocks. Therefore, LFB access operations can be executed
at intervals of 3 or 4 clocks. For more detailed descriptions about
LFBs, see [11].

Pipelined Image Merger

The pipelined image merger (PIM) periodically merges the images
stored in the LFBs according to the raster scan order. The PIM con-
sists of a linearly-connected array of per-processor elements called
merging units (MUs). Each MU receives two pixel values and out-
puts whichever one has the smallest screen depth. When a corre-
sponding image memory page is not resident on an LFB, the LFB
sends a possible maximum depth value to its MU, which makes the
MU forward the pixel value from the neighboring unit.

Each MU performs a depth comparison and data selection
through a 4-stage pipeline. Therefore, the PIM, as a whole, con-
structs a 4n-stage pipeline, where n represents the number of pro-
cessors. To realize pipeline processing, the scan counter in each

D/A CRT

CRT
Controller

Scan
Counter

MUACC

M
U

X

Host computer bus

GFB (Buffer 1)

Random I/OA0-A9

Serial
In

Serial
Out

Triple Port
DRAM Array

Random I/O

A0-A9

Serial
In

Serial
Out

Accumulation
Buffer

A0-A9

Serial
In

Serial
Out

GFB (Buffer 2)

M
U

XM
U

X

Data bus
Address bus

RGB / Z RGB/ Z

DRAM
Controller

M
U

X

Blank
Pixel
Value

Pipleline In (From the PIM)

Pipeline Out
 (To the PIM)Triple Port

DRAM Array

Triple Port
DRAM Array

32

32
32

32

32

32

32

32

16

A

B

Figure 5: Global frame buffer unit

LFB is advanced by 4 pixels in comparison with the succeeding
LFB.

The time needed for merging one full-screen image (denoted by
Tm) is equal to (M + �) � N � t + 4 � n � t, where M and N are
respectively horizontal/vertical screen sizes, t is the PIM clock pe-
riod, and � is the number of PIM clocks required for per-scanline
overhead processing in the GFB unit. The first term represents the
time for scanning the entire screen, and the second term represents
the pipeline delay time. Obviously, Tm should be less than the target
frame interval (33.3ms in our case). In the VC-1, those parameters
are M = 640; N = 480; n = 16; � = 20; and t = 80 nsec., and
therefore, Tm = 25:3msec.

Global Frame Buffer

There are two purposes for inserting the GFB between the PIM and
the CRT display:

� to deal with the LFB overflow, and

� to make the PIM raster scan asynchronous with the CRT raster
scan.
This is preferable because the scanning frequency can be set
independently to a value convenient for each unit, and also
because the image composition can be continued even during
the blanking periods of the CRT scan.

Figure 5 shows the structure of the GFB unit. The GFB is double-
buffered: one buffer is for CRT refresh, and the other buffer receives
images from the PIM. Double-buffering prevents incomplete im-
ages from appearing on the CRT. Both of the buffers have full-
screen capacity and hold both color and depth information. The
roles of these buffers are alternated at the end of image generation.

In addition to the GFBs, there is another full-screen buffer called
an accumulation buffer, which implements anti-aliasing with multi-
pass accumulation [6]. The merging unit for the accumulation
buffer (MUACC) is used to accumulate the image stored in one of
the GFBs into the accumulation buffer.

The GFBs and accumulation buffer are implemented with triple-
port DRAMs. The two serial access ports of the triple-port DRAMs
are used for data transmissions with the PIM or to refresh the CRT,
while the random access port is utilized for direct access from the
host computer.

Fast Screen Clearing

In the VC-1, the LFBs are cleared as follows. The image mem-
ory is automatically cleared by hardware while it functions as the
back buffer. When the back buffer is read out according to the scan
Node 1 Node 2 Node 3 GFB...

Drawing

LFB swap and
patch table clear

LFB overflow

GFB write

GFB swap

Frame
No. 1

Frame
No. 2

Frame
No. 3

Frame
No. 1

Frame
No. 2

Frame
No. 3

Frame
No. 4

LFB swap wait

 3

 6

 8

CRT
display

Frame
No. 1

Frame
No. 2

Frame
No. 3

Frame
No. 5

Frame
No. 4

Tm

CRT
V-Blank
(60Hz)

Tm

Tm

Tm

1

Tm: Merging time (25.3ms)

2

 5
 4

 7

Figure 6: A timing diagram for buffer swapping

counter, it is cleared immediately after each read operation. As for
the patch table, the processor must clear all the patch table entries
with software after each LFB swap.

Explicit clearance of the GFB is avoided in the following way.
During the first round of the image merging scan after the GFB is
swapped, blank pixel values are sent to the PIM input (i.e., to the
most left MU in Figure 3) so that the old contents of the GFB are
replaced. After the first round is completed, the GFB becomes cu-
mulative by sending the old contents of the GFB to the PIM input.

Buffer Swap Control

A timing diagram for buffer swapping is illustrated in Figure 6.
When each processor completes image generation, it waits for all
of the other processors to complete their tasks using global synchro-
nization, and then it swaps its LFB (1). After this swapping, the
processor immediately clears the patch table and starts generating
the next frame (2). Parallel with this, the contents of back buffers
are merged into the GFB (3). When the merge is completed (i.e.,
Tm has passed since the last LFB swap), the host computer swaps
the GFB after synchronization with the CRT vertical blanking pe-
riod (4).

When image generation is completed earlier than the GFB swap
for the previous frame, the LFB swap is postponed until the comple-
tion of the GFB swap (5). Without this control, the current frame’s
image will be mixed with the previous frame’s image. An LFB swap
on a processor is also blocked if Tm has not passed since the last
LFB swap on that processor; otherwise, the unsent contents in the
back buffer will be lost.

When an LFB overflow occurs in a particular processor (6), an
extra LFB swap is executed on that processor (7). Like a normal
LFB swap, this LFB swap is also postponed until both of the condi-
tions mentioned above are met. Then, the processor clears its patch
table and resumes drawing (8). A processor’s worst-case idle time
upon an LFB overflow is 33.3ms. We could reduce this time by
utilizing the back buffer’s image memory pages immediately after
they are sent to the GFB rather than waiting until all the contents
in the back buffer are transferred; however, this greatly complicates
LFB hardware.

4 Parallel Polygon Rendering on the VC-1

An outline of the rendering routine on the VC-1 is as follows. First,
the scene database is transmitted from the host computer to each
processor’s local memory via the broadcast bus. Polygon data are
partitioned into subsets, each of which is loaded to a different pro-
cessor’s local memory. Other database components, such as the eye
position or light source information, are duplicated to all of the pro-
cessors’ local memory. Next, the host computer broadcasts a com-
mand packet to all the processors, by which each processor starts ge-
ometric calculations and rasterization for assigned polygons. When
the image generation is completed, frame buffers are swapped as
described previously.

In generating animated images, the scene database on each pro-
cessor’s local memory is incrementally modified, i.e., only the inter-
frame difference of the database is transmitted between frames
rather than retransmitting the whole database. For example, if the
eye position has changed between frames, only the viewing matrix
is transmitted.

4.1 Polygon Assignment

The mapping of polygons to processors is one of the key factors
influencing system performance. Three points have to be consid-
ered in relation to this problem: (1) load balancing, (2) the reduc-
tion of duplicated polygon vertices among processors, and (3) the
minimization of LFB overflows. As for (1), it is not enough for rea-
sonable load balancing only to keep the number of polygons even,
since the processing time of a polygon depends on its size and clip-
ping conditions. Problems (1) and (2) have been discussed by some
researchers [3, 5]; however, (3) is a new problem specific to our
architecture.

The simplest way to achieve load balancing is to allocate inde-
pendent polygons one by one to the most lightly loaded processor at
each moment. If there is more than one choice, the target processor
is selected randomly among them. This method is advantageous in
(1); however, it is unacceptable with respect to (2) because common
vertices shared by neighboring polygons are likely scattered to dif-
ferent processors. Moreover, this method is disadvantageous in (3)
because each processor generates a highly discrete image consum-
ing a large number of patches.

A more practical method is to allocate clusters of polygons to
the most lightly loaded processor rather than allocating independent
ones [5]. The number of polygons in each cluster is called the cluster
size (denoted by w). Each cluster contains up to w polygons which
are geometrically close to each other. The sequence of polygons
specified implicitly by the user through a graphics library tends to
have space coherence, i.e., two polygons consecutively indicated
by the user have a high probability of being geometrically close.
Therefore, it is sufficient when constructing clusters to let the firstw
polygons in the sequence be the first cluster, let the next w polygons
be the second cluster, and so on. With this method, the best balance
of the aforementioned three points can be achieved by tuning the
value of w.

4.2 Adaptive Parallel Rasterization

The clustering method is not sufficient for reasonable load balanc-
ing if some polygons occupy a large area on the screen. For ex-
ample, the scene shown in Figure 13(c) has one large-sized poly-
gon constructing the table. Such a polygon not only causes load
concentration but also increases the LFB overflow. To avoid these
problems, we developed a technique called adaptive parallel raster-
ization (APR).

The APR method rasterizes a polygon in pixel parallel when its
estimated size is larger than a predetermined value called the APR
threshold; otherwise, the polygon is rasterized in polygon parallel
as usual. After geometry calculation, the processors calculate the
on-screen area of each polygon. If the area is larger than the APR
threshold, the screen coordinates and colors of the vertices of the
polygon are broadcast to all the processors using the broadcast bus.
When a processor receives the broadcast data, it rasterizes the poly-
gon only for the pixels that are assigned to the processor. Figure 12
illustrates a processor assignment based on APR.

One of the concerns of APR is the overhead due to the area cal-
culation of the polygons. However, on the VC-1 which calculates
the area as the vector product of the two edges of a triangle, it is
known from experiments that the overhead is less than 3% of the
total computation time.

5 Evaluation Results

In this section, the VC-1 architecture and our parallel polygon ren-
dering methods are evaluated using the sample scenes shown in Fig-
ure 13. For systems with 16 or less processors, real performance is
shown. For systems with 17 to 256 processors, estimated perfor-
mance is displayed.

Using the VC-1, the rendering time for over 16 processors is esti-
mated. When APR is not performed, the rendering time is estimated
using one of the processors and the host computer as follows. Ini-
tially, the rendering time for each logical processor of the estimation
target system is measured on the physical processor, and then, the
system rendering time is calculated as the maximum of the mea-
sured rendering times. If APR is active, the rendering time is split
into polygon-parallel and pixel-parallel parts, and the estimation
is performed in two passes; the first pass determines the polygon-
parallel part of the rendering time, and the second pass figures out
the complete rendering time. These methods yield exactly the same
performance as real performance (See [11] for justification). For a
16-processor system or smaller, it is confirmed from experiments
that the performance estimated by this method coincides with real
performance.

5.1 Rendering Time

Figure 7 indicates the rendering time for each sample scene varying
the number of processors. The rendering time decreases in inverse
proportion to the number of processors as long as they do not reach
33.3ms, which is the lower limit determined by the speed of the im-
age merger and the rate of CRT refresh. For scenes composed of
many polygons, such as the ter250 scene (containing 203522 poly-
gons), the excellent scalability of the VC-1 architecture is observed.
In fact, a speed 190 times faster is achieved with 256 processors for
the ter250 scene. The maximum rendering performance of the VC-
1 calculated from Figure 7 is 514K polygons per second for a 16-
processor system and 6.1M polygons per second for a 256-processor
system.

Figure 4.2 shows the rendering time as a function of image mem-
ory capacity. As the image memory capacity decreases, the render-
ing time increases because of LFB overflows. In a 16-processor
system, it is observed that 1/8 of full-screen capacity is enough to
render all the sample scenes without significant performance degra-
dation. Similarly, in a 256-processor system, image memory capac-
ity can be reduced to 1/32 of full-screen capacity.

5.2 The Effect of Adaptive Parallel Rasterization

Figure 9 displays the relationship between the APR threshold and
rendering time. As the APR threshold becomes larger (i.e., as the
ratio of polygon-parallel rasterization increases), load balancing be-
comes worse and also LFB overflows increase. Conversely, as the
APR threshold becomes smaller, total rasterization time as well as
broadcast communication time increase. Therefore, we have a min-
imum rendering time at some APR threshold. When the table scene
is rendered with 16 processors, the most appropriate APR threshold
is 500, where the rendering time is reduced to 75% of the rendering
time without APR (i.e., the rendering time when the APR threshold
is infinity).

It becomes clear from further experiments that the main advan-
tageous effect of APR is the reduction of LFB overflows rather than
the improvement of load balancing. Without APR, a polygon whose

Rendering time (ms)

30

50

70

100

150

200

300

500

700

1000

1500

1 2 4 8 16 32 64 128 256

No. of processors

table

teapot

teapot16

ter1k

ter250

Patch size: 4x4 pixels
Image memory capacity:
 1/4.7 of the full-screen capacity

Scene name

Figure 7: Rendering time versus the number
of processors

Rendering Time (ms)

30

40

50

70

100

150

200

300

400

1/8 1/16 1/32 1/641/4

Image memory capacity

teapot

teapot16

ter1k

ter250

table

(a) No. of processors = 16

Rendering Time (ms)

40

50

60

80

100

150

1/4 1/8 1/16 1/32 1/64 1/128

Image memory capacity

teapot

teapot16

table
ter1k
ter250

(b) No. of processors = 256

Figure 8: Rendering time versus image memory capacity
APR threshold (pixels)

Rendering Time (ms)

30

50

70

100

150

200

300

500

700

1000

10 100 1000 10000

teapot16 (16 processors)

teapot16 (64 processors)

table (64 processors)

table (16 processors)

infinity
2

Figure 9: Rendering time versus the APR threshold

image is larger than the image memory capacity would inevitably
cause an LFB overflow, which often leads to significant perfor-
mance degradation. APR avoids LFB overflows by dividing such
a large polygon into pieces and effectively making image memory
consumption even among processors.

5.3 Comparison with the Region-Based Approach

As described in Section 1, the PixelFlow system reduces image
memory capacity by dividing the screen into regions and rasteriz-
ing polygons in multiple passes. Each renderer in the PixelFlow
system actually has several buffers to improve load balancing. We
simulated this memory-saving method on the VC-1 for comparison.

Table 1 contrasts the performances for the two different memory-
saving methods when the ter1k scene is rendered with 16 processors.
We averaged these values over 48 different view angles. The num-
ber of buffers indicates the number of independently accessible LFB
banks in a processor. For the VLFB, this number is 2 because we use
double-buffering. For the region-based approach, this number cor-
responds to the maximum number of regions which each renderer
Table 1: Comparison with the region-based approach
Memory-saving
method

VLFB RB 2�2y RB 4�4y RB 4�4y

Number of buffers 2 2 2 4

Image memory
capacity for each
buffer

1/8 1/4 1/16 1/16

Total image memory
capacity

1/4 1/2 1/8 1/4

Rendering time 33.4ms 51.0ms 73.5ms 66.9ms

Geometry
calculation time

12.3ms 14.1ms 14.1ms 14.1ms

Rasterization time 14.7ms 29.1ms 41.5ms 41.5ms

Global
synchronization time

1.4ms 7.3ms 17.3ms 10.7ms

y ‘RB m � n’ means the region-based approach in which the screen is
divided intom� n regions.

can hold. The geometry calculation time refers to the total time
for transformation, lighting, and region classification. The rasteri-
zation time represents the total time for clipping and rasterization.
The global synchronization time indicates processor idle time due
to load imbalance.

With the VLFB, the ter1k scene can be rendered in 33.4ms using
an image memory whose total capacity is 1/4 of full-screen capacity.
On the other hand, if the region-based approach is taken, the render-
ing time increases considerably even if the image memory capacity
is 1/2. There are two main reasons for this: the increase of raster-
ization time due to additional clipping tasks for region boundaries
and the increase of global synchronization time resulting from the
aggravation of load balancing.

It is possible to introduce special hardware for clipping in order
to improve the performance for the region-based approach. Never-
theless, this will only lighten the increase in rasterization time. The
increase in global synchronization time is essential except for that
due to the load imbalance caused by the clipping.

The superiority of the VLFB becomes more remarkable in large-
scale systems. In the VLFB, the image memory capacity decreases
as the number of processors increases. However, the region-based
approach has no such characteristic.

Figure 10: The VC-1 Figure 11: The VC-1 main board
This board contains a CPU, a local memory, communication

interfaces, an LFB unit and a merging unit. It is a 6-layer printed
circuit board whose size is 356 x 400 mm.

Figure 12: Processor assignment with APR
The color of each polygon identifies the processor to which the polygon is assigned. The large polygons constructing the table are

rasterized in pixel parallel with line interleaving.

High-resolution TIFF versions of these images can be found on the CD-ROM in
S96PR/papers/nishimur

Figure 13: Sample scenes.

(a) teapot (No. of polygons = 4096) (b) teapot16 (No. of polygons = 65536) (c) table (No. of polygons = 10224)
(d) ter1k (No. of polygons = 12482) (e) ter250 (No. of polygons = 203522)

High-resolution TIFF versions of these images can be found on the CD-ROM in
S96PR/papers/nishimur

6 Discussions

As the number of processors increases, the APR threshold should
be lowered, since the image memory capacity for each processor
decreases. One might think that this limits the system scalability
because the number of polygons transmitted via the broadcast bus
increases. However, the average size of these polygons tends to be-
come smaller as the number of processors increases, and therefore,
we believe that this is not a serious limitation.

To perform anti-aliasing with true real-time image generation or
to increase screen resolution, the bandwidth of the image merger
must be increased in proportion to the number of samples per pixel
or the number of pixels on the screen. As a result, an extremely high
bandwidth will be required. This is a major weakness of image com-
position architecture, although we think that future advancement in
device technology will take care of this. As for scalability, this still
remains regardless of these extensions.

If special hardware for rasterization is added to our architecture,
the number of polygons per processor will increase. This does not
necessarily mean an increase in image memory capacity. The im-
age memory capacity is strongly related to the number of pixels ac-
cessed in each processor, which is represented as a �p=n, where a is
the average size of polygons, p is the total number of polygons, and
n is the number of processors. Since a � p (i.e., the number of pix-
els totaled over all the polygons) usually remains constant against
changes in the number of polygons, a � p=n is invariable no matter
how p=n increases. As for scalability, adding special hardware does
not influence this.

VC-1 is designed mainly for retained-mode graphics APIs. It
is possible to support immediate-mode APIs if the host computer
broadcasts the whole scene database for each frame; however, the
system will no longer be scalable because the broadcast bus will
be bottlenecked. It seems that there is no way to make a scal-
able machine with immediate-mode APIs since they enforce the se-
rial traversal of the database in the host computer. Even with the
retained-mode APIs, the broadcast bus may be bottlenecked when
the coordinates of the polygon vertices are constantly changing.
However, this problem can be solved by allowing the node proces-
sors to determine the coordinates by solving physical equations or
dividing curved surfaces, for example.

7 Conclusions

In this paper, we proposed a novel frame buffer architecture called
the virtual local frame buffer to reduce the memory requirement in
parallel graphics machines based on image composition. To eval-
uate the architecture, we developed a prototype machine called the
VC-1. From experiments on the VC-1, it was observed that the
virtual local frame buffer technique reduces the image memory ca-
pacity to 1/8 of full-screen capacity in a 16-processor system and to
1/32 in a 256-processor system without sacrificing the system’s per-
formance. This reduction enables us to use fast static RAMs for the
local frame buffer, by which rendering performance is improved.

The adaptive parallel rasterization method, which selects an ap-
propriate parallelization approach based on a threshold value, is es-
sential to the virtual local frame buffer. Without this technique, the
system performance would be degraded considerably due to the ex-
haustion of the image memory. However, the problem of how to
find the optimal threshold, which guarantees the avoidance of this
exhaustion, is still open.

In the future, we would like to extend our architecture to support
both anti-aliasing and texture mapping. We are also planning to
add special hardware for rasterization to this architecture to improve
polygon rendering performance.

Acknowledgments

We greatly appreciate the financial support of Kubota Computer,
Inc. We are also grateful to the members of the past VC-1 project
in the University of Tokyo, Ryo Mukai, Reiji Suda and Yukio Saka-
gawa for their help in hardware design, and Jun Naito for his assis-
tance in software development. Special thanks go to Hiroyuki Nitta
for his help in gathering equipment and materials and providing use-
ful technical information. We would also like to thank Thomas Orr
for his thoughtful comments.

References

[1] Akeley, K. RealityEngine Graphics. Proceedings of SIG-
GRAPH ’93 (August 1993), 109–116.

[2] Cohen, D., and Demetrescu, S. A VLSI approach to
Computer Image Generation. Tech. rep., Information Sciences
Institute, University of Southern California, 1979.

[3] Cox, M. Algorithms for Parallel Rendering. PhD thesis,
Dept. of Computer Science, Princeton University, 1995.

[4] Deering, M., Winner, S., Schediwy, B., Duffy,
C., and Hunt, N. The Triangle Processor and Normal
Vector Shader: A VLSI System for High Performance Graph-
ics. ACM Computer Graphics 22, 4 (August 1988), 21–30.

[5] Ellsworth, D., Good, H., and Tebbs, B. Distribut-
ing Display Lists on a Multicomputer. ACM Computer Graph-
ics 24, 2 (March 1990), 147–154.

[6] Haeberli, P., and Akeley, K. The Accumulation
Buffer: Hardware Support for High-Quality Rendering. ACM
Computer Graphics 24, 4 (August 1990), 309–318.

[7] Kubota Computer Inc. TITAN2 Technical Overview,
1993.

[8] Molnar, S. Combining Z-buffer Engines for Higher-Speed
Rendering. In Advances in Computer Graphics Hardware III
(1988), Springer Verlag, pp. 171–182.

[9] Molnar, S., Cox, M., Ellsworth, D., and Fuchs,
H. A sorting classification of parallel rendering. IEEE Com-
puter Graphics and Applications 14, 4 (July 1994), 23–32.

[10] Molnar, S., Eyles, J., and Poulton, J. Pix-
elFlow: High-Speed Rendering Using Image Composition.
ACM Computer Graphics 26, 2 (July 1992), 231–240.

[11] Nishimura, S. A Parallel Architecture for Computer
Graphics Based on the Conflict-Free Multiport Frame Buffer.
Doctoral dissertation, Dept. of Information Science, Faculty
of Science, The University of Tokyo, 1995.

[12] Palovuori, K. An Implementation of an Linearly Expand-
able Graphics Processing Architecture. Tech. Rep. 8-94, Dept.
of Electrical Engineering, Tampere University of Technology,
Finland, 1994.

[13] Roman, G. C., and Kimura, T. VLSI perspective of
real-time hidden-surface elimination. Computer-Aided Design
13, 2 (March 1981), 99–107.

[14] Schneider, B.-O. A Processor for an Object-Oriented
Rendering System. Computer Graphics Forum 7, 4 (1988),
301–310.

[15] Shaw, C. D., Green, M., and Schaeffer, J. A
VLSI Architecture for Image Composition. In Advances in
Computer Graphics Hardware III (1988), Springer Verlag,
pp. 183–199.

[16] Weinberg, R. Parallel Processing Image Synthesis and
Anti-Aliasing. ACM Computer Graphics 15, 3 (August 1981),
55–62.

